If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-42x+76=0
a = 4; b = -42; c = +76;
Δ = b2-4ac
Δ = -422-4·4·76
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{137}}{2*4}=\frac{42-2\sqrt{137}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{137}}{2*4}=\frac{42+2\sqrt{137}}{8} $
| X+2x-5)+35=180 | | (64/6)=(x/30) | | 64/6=x/30 | | 7-m=4m+5 | | -4=k+7 | | 30x+20=20x+45 | | y+16=74 | | 10=s/3 | | 2(x-5)-6=7 | | h-5=-7 | | 11=0.33a+2 | | -8=3+a | | -19x^2+21x=-55 | | -19x^2-21x=-55/ | | -1x^2-21x=-55/ | | m-5/4=3 | | f/5-9=3 | | z/2+4=15 | | d/6-5=2 | | 5(2p-3)-3(2p-3)=4 | | 4x-5=3/9 | | 1/3(n-6)-1=31 | | 1/2(n-6)-1=31 | | 8y^2-8y=6 | | 9/x=-14 | | 9/x+7=-7 | | 8n+3=42 | | 12x=11x-33 | | X=4-6x+10 | | 3b-8=7b-4 | | W(2/3w)=864 | | 3p^2-14p=-12 |